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ABSTRACT 

 

This paper utilizes the well-known prospect theory to study how travel mode choice is affected 

by travel-time reliability. Prospect theory is developed to model decision making under risk. 

Travel-time reliability is related to uncertainties in travel-time, and its effect on travel behavior is 

a good candidate for applying prospect theory. The prospect theory is combined with a discrete 

choice model to build a mode choice framework. The choice model parameters, in addition to 

prospect theory parameters, are estimated using a combination of revealed preference household 

travel survey data and empirically observed reliability data for a real-world application. This 

application showcases how real-world observational data can be used in a prospect theory-based 

mode choice model. The proposed model’s estimated parameters are discussed and goodness-of-

fit is compared with the utility-based mean-variance model. The paper focuses on mode choice, 

but its extension to other choice dimensions is discussed.  
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INTRODUCTION 

In transportation literature, there are two main approaches to considering reliability within utility 

maximization theory. The first is called mean-variance approach, in which a dispersion measure 

of travel-time distribution, such as variance or standard deviation, is added to the utility function 

by linear summation. The second is called scheduling approach, in which expected earliness 

penalty and lateness penalty are added to the utility function by linear summation.  

Travel choice with alternatives that have unreliable attributes is a type of decision making under 

risk. Prospect theory (PT, see 
1
) is a widely used theory in psychology and behavioral economics 

for decision making under risk. In PT, it is assumed that under uncertainty, the decision maker 

chooses the alternative that has the highest prospect value. The prospect value is evaluated 

relative to a reference point, using a probability weighting function and a value function. The 

theory states that gain or loss of each prospect is evaluated by comparison with a reference point. 

The role of value and weighting function is to model perceived uncertainty, risk-aversion and 

diminishing sensitivity.   

In transportation literature, a number of studies have used PT to explain travel behavior 
2
. De 

Palma et al. 
3
 described the theory of integrating risk and uncertainty into discrete choice models 

and utilizing non-expected utility-based models within discrete choice framework. Avineri and 

Prashker 
4
 conducted one of the earliest studies that used CPT to find the market share between 

two hypothetical unlabeled routes. In a numerical example, Avinery 
5
 used PT to study the 

choice between two bus lines with different headway distributions. Gao et al. 
6
 used simulated 

choice data and parameters estimated by Kahneman and Tversky 
7
 to compare expected utility 

theory (EUT) and PT for route choice in a risky network . Michea and Polak 
8
 studied train 

travelers’ behavior using different models such as CPT. Senbil and Kitamura 
9
 collected a survey 

asking respondents about three consecutive commuting days, and used PT in the departure-time 

choice context. Connors and Sumalee 
10

 modeled network equilibrium on a hypothetical network 

using PT.  

The authors see decision making under unreliable travel times as a good context to apply PT, as 

the theory is designed for decision making under uncertainty. The review of transportation 

literature revealed some valuable studies incorporating PT in travel behavior, but most of the 

studies were in the experimental setting. They had to collect the required data, and use limiting 

assumptions on the reference point, in addition to value and weighting function parameters. 

Besides, focus on mode choice is very limited.   

This paper proposes a general framework that uses revealed-preference survey data and historical 

travel-time data to model effect of perceived reliability on mode choice based on PT. It estimates 

value and weighting function parameters, and the reference point from the data, using few 

assumptions. The proposed framework’s data requirement is similar to the requirement of 

widely-used mean-variance model. It does not require any further data collection or experiment.  

METHODOLOGY 

The proposed methodology introduces two new PT-based terms to capture effect of travel-time 

and travel-time variation in the utility function:  

𝑃𝑈𝑖 = 𝛽𝑅𝑇𝑇 ∗ 𝑅𝑇𝑇𝑖 +  𝛽𝑇𝑇𝑃 ∗ 𝑇𝑇𝑃𝑖 + 𝜖𝑖     (1) 

In Equation 1, PUi is the perceived utility of alternative i,   𝑅𝑇𝑇𝑖 is the reference travel-time of 

alternative i, and  𝑇𝑇𝑃𝑖 is defined as the prospect value for alternative i’s travel-time, obtained 

from travel-time distribution of alternative i using value and weighting functions.  TTP captures 

effect of perceived travel-time variation or perceived reliability. 𝜖𝑖 is the error term assumed to 

be distributed as extreme value type 1 Gumbel in order to have logit formulation for choice 
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probabilities. The following items must be assumed in order to calculate TTP from travel-time 

distribution at time of departure: 

 The reference point 

 The form of value function 

 The form of probability weighting function 

The assumption of reference point can have a significant effect on the results. The 

reference travel-time might be different for each traveler. In this paper it is assumed that the 

reference travel-time is a traveler’s expected travel-time, which can be the traveler’s average 

experienced travel-time between the origin and destination. In cases where an individual’s 

experienced travel-time data is not available, mean value of travel-time distribution at time of 

departure between the origin and the destination can be used for RTT of all individuals traveling 

between the origin and the destination at the same departure-time.  

Considering that the reference point (RTT) is defined as the expected travel-time, individuals 

schedule their travels based on the reference point. Any travel-time not equal to the reference 

travel-time leads to either early or late arrival (disutility). Therefore, any variation from the 

reference travel-time is considered a loss. As a result, value function is only defined for the loss 

domain. However, as early and late arrivals may have different effects, parameters of the value 

function are assumed to be different for travel-times bigger than the reference travel-time and 

travel-times smaller than that the reference. 

Value and weighting functions are assumed to follow the form suggested by Kahneman and 

Tversky 
1
. Equation 2, (with λ (degree of loss aversion) set to 1, and different β parameters for 

travel-times bigger and smaller than the reference travel-time (𝛽𝑒𝑎𝑟𝑙𝑦 and 𝛽𝑙𝑎𝑡𝑒) is assumed to be 

the value function for the loss domain.   

𝑉(𝑋) = (−𝜆)(−𝑋)𝛽     𝑋 < 0      (2) 

Equation 3 is assumed to be the form of probability weighting function,  

𝑊(𝑝𝑚) =
(𝑝𝑚)𝛾

[(𝑝𝑚)𝛾+(1−𝑝𝑚)𝛾]
1
𝛾

       (3) 

where 𝑊(𝑝𝑚) is the weighted probability of the m
th

 outcome, and 𝛾 is the probability weighting 

parameter.  

If the travel-time density function at time of departure (showing day-to-day variation of travel-

time at time of departure) is available as a continuous function over travel-time domain, then 

TTP is obtained by the following equation: 

𝑇𝑇𝑃 =  ∫ 𝑉(−|𝑡𝑡 − 𝑅𝑇𝑇|) ∗ 𝑊(
 

𝑡𝑡 ∈𝑇𝑇
 𝑓(𝑡𝑡)) 𝑑(𝑡𝑡)    (4) 

In this equation, TT is travel-time domain, 𝑉() is the value function,  𝑊() is the probability 

weighting function, and 𝑓() is travel-time density function. Equation 4 is applying Kahneman & 

Tversky’s PT formulation over a continuous range of values.  

In some real-world applications, continuous function of travel-time distribution is not available. 

In many cases, only a limited number of travel-time observations are available for the time of 

departure. In such cases, the modeler can estimate the continuous travel-time distribution 

function using the observed data, or approximate the discrete version by forming a set of discrete 

bins for travel-time. 

As the proposed model’s data requirement is similar to the mean-variance model, it is interesting 

to compare their performance and goodness-of-fit using one dataset. 

EMPIRICAL APPLICATION 
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Drivers tend to dislike high travel-time variations resulting from accidents, bad weather, 

roadwork, fluctuation in demand, etc. Compared to driving, rail usually has more reliable travel-

times since it follows a fixed schedule of operation. It would be interesting to explore how this 

difference in travel-time reliability would affect travelers’ choice between these two modes. Two 

models based on Equations 5 and 7 were estimated for this mode choice problem, and their 

performances were compared. The estimated PT-based parameters showed interesting 

interpretation. 

Data 

Two datasets were used in this application: INRIX data and the 2007-2008 TPB-BMC household 

travel survey. INRIX data was used to obtain origin-destination (OD) level travel-time 

observations, and 2007-2008 TPB-BMC household travel survey data was used to provide 

information on observed trips and their chosen mode. 

INRIX Data: INRIX collects road speed information from millions of mobile phones, connected 

cars, trucks, delivery vans, and other fleet vehicles with GPS devices and provides these real-

time and historical speed and travel-time data to users. Traffic Message Channels (TMC) 

location codes are used in INRIX data as location indices. Each road segment in the INRIX 

network has one unique TMC location code. INRIX data can provide minute-by-minute travel-

time and speed information throughout the day for selected road segments, which can be used to 

calculate travel-time and travel-time reliability for any time-of-day for a specific road by using 

variation among different days. Kim and Coifman validated the quality of INRIX data by 

comparing it with loop detector data. In this study, INRIX data was used to obtain historical 

travel-time observations between selected OD pairs 
11

.  

2007-2008 TPB-BMC Household Travel Survey (HHTS): This survey was conducted by the 

Transportation Planning Board (TPB) from February 2007 to April 2008 in order to gather 

information about demographics, socioeconomic and trip-making characteristics of residents in 

Washington and Baltimore metropolitan areas.  

In this application example, OD pairs in the Washington, D.C. area that have both rail and 

driving trips in the travel survey were selected and studied. It was assumed that in these OD 

pairs, both travel modes are available and are competing with each other. In total, there were 160 

OD pairs with both rail and driving trip records and available INRIX data. The reported travels 

between these 160 OD pairs formed a major component of this application example. In these 160 

OD pairs, 179 rail trips, 193 driving trips, and only 37 trips of other travel modes were observed. 

Due to the small number of trips in other modes, it was assumed that rail and driving are the only 

available alternatives. Therefore, only driving and rail was considered in the mode choice model.  

179 rail trips and 193 driving trips (372 in total) formed the observations in the mode choice 

problem.  

The INRIX historical travel-time data between the origin and the destination at the time of 

departure was collected for these 372 survey observations. One year of INRIX data 

corresponding to the year 2012 was obtained, and day to day travel-time variation (after 

removing outliers) at time of departure was used to get travel-time distribution for each 

observation. It should be noted that 2012 was the year closest to 2008 with the proper coverage 

on the studied OD pairs. The inconsistency between the survey year and the travel-time year is 

one of the limitations of this application example.  TMC level INRIX data had to be processed to 

obtain OD-level travel-time observations. The process for obtaining OD-level travel-time 

observations from TMC-based data is explained in Tang et al. and Mishra et al.  

INRIX data was used for driving travel-times to calculate the following: 
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 TTRdriving: Travel-time reliability measure of the driving mode for mean-variance model. 

It was calculated by taking the standard deviation of INRIX observations between the origin and 

the destination at the time of departure. 

 RTTdriving: Reference travel-time of the driving mode for the PT-based model. It was 

calculated by taking the mean of the INRIX observations between the origin and the destination 

at the time of departure. 

 TTPdriving: Prospect value of the driving travel-time. It was calculated by Equation 8 using 

INRIX observations between the origin and the destination at the time of departure.  

INRIX does not have information on rail travel-time. Due to the selection method of studied OD 

pairs, they all had both rail and driving trip records in the survey. Therefore, the travel-time of 

the rail mode between each OD pair could be obtained from the survey. It was obtained by 

averaging the reported travel-time of all the rail trips between the origin and the destination.  To 

use consistent dataset, driving travel-times were also obtained from the survey similar to rail 

travel-times. These reported survey travel-times \ were used to calculate the following: 

 TTrail: Mean travel-time of the rail mode for the mean-variance model. It was calculated 

by averaging the reported travel-time of all the rail trips between the origin and the destination. 

  TTdriving: Mean travel-time of the driving mode for the mean-variance model. It was 

calculated by averaging the reported travel-time of all the driving trips between the origin and 

the destination. 

 RTTrail: Reference travel-time of the rail mode. Similar to TTrail, it was calculated by 

averaging the reported travel-time of all the rail trips between the origin and destination.  

Rail was assumed to be very reliable; meaning that rail travel-time between each OD pair was 

assumed to be constant and equal to the average reported rail travel-time between the OD pair; 

therefore, rail’s TTR for mean-variance model and TTP for the PT-based model were assumed to 

be equal to 0. Although rails usually are reliable and follow their schedule, but assuming them to 

be perfectly reliable is another limitation of this application example. Data on rail reliability can 

certainly improve this example.  

Mode Choice Model Estimation Results 

Mode-specific utility functions for the mean-variance-based model based on the previous 

notation can be seen in the following equations: 

𝑈𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑑𝑟𝑖𝑣𝑖𝑛𝑔 + 𝛽𝑇𝑇𝑅 ∗ 𝑇𝑇𝑅𝑑𝑟𝑖𝑣𝑖𝑛𝑔 + 𝜀𝑐𝑎𝑟   (10) 

𝑈𝑟𝑎𝑖𝑙 = 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑟𝑎𝑖𝑙 + 𝜀𝑟𝑎𝑖𝑙       (11) 

Equations 11 and 12 do not include any alternative specific constants as the mode share is almost 

equal between the two modes. As discussed earlier, rail travel-time was assumed to be reliable, 

so no reliability term was added to rail’s utility function. Mode-specific perceived utility 

functions for the PT-based model based on the previous notation can be seen in the following 

equations: 

𝑃𝑈𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = 𝛽𝑅𝑇𝑇 ∗ 𝑅𝑇𝑇𝑑𝑟𝑖𝑣𝑖𝑛𝑔 + 𝛽𝑇𝑇𝑃 ∗ 𝑇𝑇𝑃𝑐𝑎𝑟 + 𝜀𝑐𝑎𝑟   (12) 

𝑃𝑈𝑟𝑎𝑖𝑙 = 𝛽𝑅𝑇𝑇 ∗ 𝑅𝑇𝑇𝑟𝑎𝑖𝑙 + 𝜀𝑟𝑎𝑖𝑙      (13) 

For the sake of simplicity, all error terms were assumed to be extreme value type 1 Gumbel 

(Multinomial Logit 
12

). It should be noted that the simplest type of discrete choice model is 

assumed here to showcase the application of the proposed methodology. More advanced types of 

discrete choice models can also be used for comparing mean-variance and PT-based approaches.  

Maximum Likelihood Estimation was used to estimate model parameters in the Multinomial 

Logit model described by utilities in Equations 10 and 11. The Maximum Likelihood Estimation 
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was coded in R 
13

. TABLE  summarizes the estimation results for the mean-variance-based 

model.  

TABLE 1. Estimation Results for the Mean-Variance-Based Model 

Parameter Coefficient Std. Err. t stat 

βTT(t stat) -0.010  0.004 -2.331 

βTTR(t stat) -0.112  0.039 -2.850 

Log Likelihood 252.337 

In order to estimate the Multinomial Logit described by perceived utilities in Equations 12 and 

13, TTP should be known. TTP is a function of three unknown parameters 𝛾 (probability 

weighting function parameter), 𝛽𝑒𝑎𝑟𝑙𝑦 (value function parameter for early arrivals) and 𝛽𝑙𝑎𝑡𝑒 

(value function parameter for late arrivals). The likelihood function was maximized as a function 

of all unknown parameters (𝛽𝑅𝑇𝑇, 𝛽𝑇𝑇𝑃, 𝛾, 𝛽𝑒𝑎𝑟𝑙𝑦, 𝛽𝑙𝑎𝑡𝑒) using BFGS method 
14

.  𝛾 = 1.194, 

𝛽𝑒𝑎𝑟𝑙𝑦 = 0.597, and 𝛽𝑙𝑎𝑡𝑒 = 0.931 maximized the utility function. After keeping these three 

parameters fixed, Multinomial Logit model corresponding to Equations 12 and 13 was estimated. 

TABLE  summarizes the estimation results of the PT-based model. 

TABLE 2. Estimation Results for the PT-Based Model 

Parameter Coefficient Std. Err. t stat 

βRTT(t stat) -0.013 0.005 -2.961 

βTTP(t stat) 0.584 0.182 3.199 

Log Likelihood 251.803 

The following items should be discussed about the estimation results: 

 The estimated coefficients for travel-time and travel-time unreliability in the mean-

variance-based model were negative and statistically significant with 𝛼 = 0.05. It was consistent 

with the expectation, because higher travel-time and higher unreliability are both undesired. The 

estimated coefficient of reference travel-time was negative and statistically significant with 

𝛼 = 0.05 as expected.  Higher reference travel-time for a mode, similar to higher travel-time in 

the mean-variance-based model is undesirable, as travelers prefer to spend less time traveling 

between their origin and destination. The estimated coefficient for the travel-time prospect was 

positive and statistically significant with 𝛼 = 0.05. A higher travel-time prospect means more 

unreliability, which is undesirable. Considering that TTP is defined as a negative variable (The 

value function is only defined over loss domain), the estimated coefficient was expected to be 

positive. Therefore, the estimated coefficient for TTP had the expected sign. 

 The value of 𝛾 should be positive by definition. A negative 𝛾 will result in a decreasing 

function, while the probability weighting function needs to be increasing. A 𝛾 smaller than 1 will 

result in a weighting function that increases low probabilities and decreases high probabilities. A 

𝛾 value bigger than 1 has the reverse effect. The estimated value of 𝛾 was a positive value bigger 

than 1, which showed that travelers exaggerate high probabilities and play down low 

probabilities. It implied that travelers ignore travel-time conditions with very low probability. 

While this finding can be reasonable in this contexts, it contradicts the main body of PT literature 

in which 𝛾 is assumed to be smaller than 1. This finding highlights the possible variation of PT 

parameters in different contexts. 

 The value function adds diminishing sensitivity to the model. The value of 𝛽 must be 

between 0 and 1 for the value function to comply with the diminishing sensitivity property. A 

lower 𝛽 value corresponds to more extreme diminishing sensitivity. The estimated values of 

𝛽𝑒𝑎𝑟𝑙𝑦 and 𝛽𝑙𝑎𝑡𝑒 were both between 0 and 1, as expected. The estimated value for early 
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departures were significantly lower than late arrivals. It showed that the sensitivity toward late 

departures do not diminish as acutely as the sensitivity toward early arrivals. It implied that 

travelers care more about the amount of their lateness than the amount of their earliness. The 

estimated 𝛽𝑙𝑎𝑡𝑒 was very close to 1 which showed very weak diminishing sensitivity for late 

arrivals. 

 The performances of the two models were relatively similar. The PT-based model had a 

slightly better likelihood. 

SUMMARY AND CONCLUSION 

This paper introduced a methodology to consider the effect of travel-time reliability on mode 

choice behavior using prospect theory. Prospect theory was introduced in the fields of 

psychology and behavioral economics to model decision making under risk. Mode choice with 

unreliable travel-time attribute was considered as a case of decision making under risk. As an 

application, proposed model was estimated in a mode choice between unreliable driving and 

reliable rail using a combination of revealed preference survey data and empirically observed 

travel-time data. The estimation results showed that the perceived travel-time distribution is 

different from the actual travel-time distribution. The results implied that travelers ignore 

conditions with low probability when they evaluate reliability of a mode. The results also 

showed that travelers’ sensitivity toward being early decreases more rapidly than their sensitivity 

toward being late. The performance of the proposed model was compared with the widely used 

mean-variance model and showed slight improvement.  
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