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ABSTRACT 

Artificial intelligence methods are widely used in travel mode detection based on passively 

collected GPS data. This paper presents a jointly trained single-layer model and deep neural 

network for travel mode detection. Being “wide” and “deep” at the same time, this model combines 

the advantages of both types of models to be able to make sufficient generalizations using multi-

layer deep learning and capture the exceptions using the wide single-layer model. The model is 

empirically tested on a GPS dataset collected in the Washington D.C. and Baltimore metropolitan 

regions. We also innovatively line-up the multimodal transportation network to the GPS trajectories 

in order to infer the closeness to the nearby rail (both underground and aboveground) and bus lines. 

To the best knowledge of the authors, this paper is the first to use land use data to infer 

underground metro modes. The empirical test showcases the superior goodness-of-fit and high 

precision and recall rates of the proposed wide and deep learning model compared with other 

benchmark machine learning models. 

1. BACKGROUND 

Thanks to the vividly growing smartphone industry, passively collected travel data has never been 

so readily available before. The widespread use of Global Positioning System (GPS)-based 

technologies, GPS loggers, GPS-enabled phones, etc., provides an innovative but accurate approach 

to observe and track individuals’ travel behavior. Compared to traditional data collecting activities, 

without spending abundant time and money, GPS-based technologies play as a trending role in 

collecting a large amount of accurate spatial and temporal information passively. In addition, the 

fast development of connected vehicles and autonomous vehicle technologies ensures the continued 

influx of GPS data. This advent of GPS big data requires technologies and research for processing 

and utilization to better serve our life. In order to optimally use GPS data, we must be able to infer 

multiple trip information, such as travel modes and trip purposes.  

 

Mode detection based on GPS raw data drew increasing research attention in the past decade while 

GPS technology has been widely used to collect large-scale transportation data. Researchers have 

explored artificial intelligence (AI) methods to cope with mode detection, including Decision Tree 

(e.g. Stenneth 2011; Zheng, 2008), Neural Network (Gonzalez et al., 2010; Byon, 2014; Yang, 

2015), Naïve Bayes and Bayesian Networks (Xiao, et al., 2015), Support Vector Machines (e.g. 

Zhang, 2011), Random Forest (e.g. Lari, 2015), etc. Wu et al. (2016) have conducted a thorough 

synthesis of existing studies on this topic. Data, methodologies, and research outcomes are 

reviewed and compared. Overall, the current practices can detect car mode with high accuracy 

(with high-definition GPS traces which also draws battery concerns). However, the detection of 
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bus/metro/subway modes is not as satisfying. One possible methodological limitation that could 

lead to this is the single-layer AI representation. The single-layer neurons or rules often cannot 

make enough generalization on a high-dimensional problem. To generalize unobserved feature 

combinations for bus or metro modes, a multi-layer deep neural network (DNN) can perform much 

efficiently with much fewer nodes in each layer.  

 

In this paper, we present a study employing a jointly trained single-layer model and deep neural 

network for travel mode detection. This model combines the advantages of both types of models to 

be able to make sufficient generalizations using a multi-layer DNN and capture the exceptions 

using the wide single-layer model (Cheng, et al., 2016). We compare its performance with other AI 

methods, including generalized linear models, decision tree models, support vector machine models 

and other ensemble model: random forest models, bagging and boosting. In addition to the 

traditional features used in the literature (e.g. average speed, maximum speed, trip distance, etc.), 

this study constructed two innovative features based on land use data: the distance to the closest rail 

line (both underground and aboveground) and the distance to the closest bus line. To the best 

knowledge of the authors, this paper is the first to use land use data to infer Metro mode that is 

typically underground. 

 

The remainder of the paper will first introduce the methodology. The benchmark Random Forest 

model and the proposed wide and deep learning model for travel mode detection will be explained. 

Then, empirical data passively collected from smartphone GPS loggers provides the training and 

testing data for the study, as well as the application context. Furthermore, results show superior 

performance of the wide and deep learning model compared with other models. Goodness-of-fit, 

precision and recall rates are compared among the models discussed in the end of this paper.  

2. MACHINE LEARNING MODELS 

2.1 Benchmark Models 

Based on the authors’ previous studies on rule-based models and decision trees (Xiong and Zhang, 

2013; Tang et al., 2016; Tang et al., 2017), the models of generalized linear model, decision tree 

model, support vector machine and some other ensemble models: random forest and adaptive 

boosting are selected as the benchmark for this mode detection research. A random forest is an 

ensemble of decision trees (Ho, 1995), generally trained via the bagging method, or sometimes 

pasting. In our research, we use the bagging (also know as bootstrap aggregating) method and all 

the trees share some weights. However, to make the prediction more accurate, we need to pay more 

attention to the training instances that the predecessor underfitted. This results in new predictors 

focusing more and more on the hard cases. The technique is called adaptive boosting (adaboost). 

The adaboost method in this paper also uses a decision tree as the base classifier and change the 

relative weights based on misclassified instances (Freund et al., 1999). 

2.2 A Model of Wide and Deep Learning 

In this paper, we explore the mode detection based on a wide and deep learning approach, as 

illustrated in Figure 1. As previously discussed, this model is capable of generalizing rules and 

memorizing specific exceptions at the same time. It leads to superior prediction accuracy, compared 

to stand-alone generalized linear models, decision tree models, DNN models, and the other 

benchmark models. These models are all trained and fine-tuned using the TensorFlow platform in 

Python. 

 

GPS trajectory features (trip time, distance, OD distance, avg. speed, and maximum speed) and 

network features (average distances to the nearest Metro line and bus line) are used in the Wide and 

Deep model. These features are all continuous and normalized to the range of [0, 1]. More details 

of the data and variables can be found in the next section. Two hidden layers in the DNN are 
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illustrated in Figure 1, with m neurons and n neurons, respectively. The number of layers and the 

number of neurons in each layer can be fine-tuned. In the empirical test of this paper, we have used 

three hidden layers and we have also tested the model using a different number of neurons. 

 
Figure 1. The Framework of the Mode Detection Model Based on Wide and Deep Learning. 

3. TRAVEL MODE DETECTION DATA 

3.1 Data Collection Effort 

The data was originated from a research analyzing the travel behavioral impact of the 2016~2017 

Washington D.C.’s Metro SafeTrack project. The SafeTrack is a series of 16 maintenance surges 

that addresses safety recommendations for the Metro system, which lead to significant service 

disruptions to different Metro lines in D.C. To assess the impact and analyze the travel behavior 

responses, the authors have conducted joint web-smartphone surveys on over 2,000 Metro users. A 

total of 865 trips are specified with travel mode information and these data are used for mode 

detection modeling in this study. Of these 865 trips, 19.31% are auto trips, 15.84% are bus trips, 

52.94% are metro trips and 12.37% trips are walk trips. Since this survey was targeted towards 

metro users, a high percentage of metro trips are captured. During the survey, only three trips are 

reported as bike trips and these trips are excluded from this study due to small sample size. 

3.2 Data Processing for Training 

In this study, the location point data collected in this study has information including latitude, 

longitude, the instantaneous speed, accuracy and timestamp. The collected raw GPS location data is 

filtered based on two criteria: accuracy and the average speed between two successive location 

points. To impute travel mode information, trip end information has to be extracted from a series of 

GPS location points. The trip end identification method in this study is similar to the approach 

proposed by Tang, Pan and Zhang (2017). A trip end is identified as the first and last location point 

in a stay region. In this study, a stay region is defined as the region where the user has stayed longer 

than a time threshold 𝑇, within a distance range of 𝑇 and under a speed limit 𝑇. The typical 

trajectory features are employed in our empirical testing as: trip distance, trip time, OD distance, 

average speed, maximum instantaneous speed, and average data record. In addition, this study also 

defines network features using the available Metro and bus line information. In specific, we employ 

the average distance to the nearest rail.  

4. EMPIRICAL TESTING RESULTS 

4.1 Goodness of Fit Measures 
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We compare the models discussed in this paper, generalized linear model, decision tree, support 

vector machine, random forest, adaptive boosting, deep neural network, and wide-and-deep model. 

The prediction accuracy of 10-fold cross validation is used to measure the performance of the 

models that we compare. Before that, we checked the performance of the network features. The 

average accuracy increases from 80.6% to 89.6% in the random forest model and increases from 

92.9% to 98.3% in our deep and wide learning model. Therefore, in the next section the network 

features will be included in both the benchmark and advanced models.  

 

Table 1 summarizes the performance measures of the models. With 400 neuron nodes coded in the 

first hidden layer and a default optimizer: AdaGrad, the average prediction accuracy of the model 

reaches 95.7%. Compared to the benchmark models, the improvement is significant. The best Wide 

and Deep model with RMSProp optimizer can reach 98.3% prediction. We also find that by adding 

the network features, the detection accuracy rate are greatly enhanced.  

Table 1. Goodness of Fit Measures Based on Different Machine Learning Methods 

Model Avg. Loss Avg. Accuracy 

Generalized Linear Model 0.299 0.867 

Decision Tree 0.354 0.851 

Support Vector Machine 0.238 0.885 

Random Forest 0.193 0.896 

Adaptive Boosting 0.125 0.908 

Deep Neural Network 0.175 0.903 

Wide and Deep Model (AdaGrad Optimizer) 0.076 0.957 

Wide and Deep Model (RMSProp Optimizer) 0.045 0.983 

4.2 Precision and Recall Rates 

Besides accuracy, we also need consider the precision and recall rates of our model. The precision 

(also called positive predictive value) equals to FP/(TP + FP). Here, TP is the number of true 

positives, and FP is the number of false positives. And recall (also known as sensitivity) equals to 

TP/(TP + FN), where FN is the number of false negatives. Figure 2.1 and 2.2 in the following 

compare the benchmark models and the proposed Wide and Deep model (all with network features) 

by examining the precision and recall rates of the 10-fold cross validation. 

 

Figure 2.1. Precision Rates of Benchmark Models and the Wide and Deep Learning Model. 
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Figure 2.2. Recall Rates of Benchmark Models and the Wide and Deep Learning Model. 

Overall, the stand-alone models (Generalized Linear Model, Decision Tree and Support Vector 

Machine) are worse than the ensemble models (Random Forest and Adaboost). Moreover, the Wide 

and Deep Learning model has the best results. We could find out from the above two figures that 

the Wide and Deep Learning Model has the highest average precision and recall rates, especially 

for metro and bus. The precision and recall rates are all over 90% in the Wide and Deep Learning 

model, which indicates that each mode is predicted well inside our model. Nevertheless, for other 

models, the bus mode has both low precision rates and recall rates.  

5. CONCLUSION AND DISCUSSIONS 

5.1 Conclusion 

This paper is a first study that brings a joint wide and deep learning modeling framework to travel 

mode detection. Being “wide” and “deep” at the same time, this proposed model combines the 

advantages of both types of models and greatly improves the model goodness-of-fit. The paper also 

innovatively adopts multimodal network measurements as features to detect Metro and bus modes. 

The wide and deep learning model has the best prediction results compared to other machine 

learning models. Follow up research should look into how the model can be fine-tuned even 

further. With near perfect mode detection accuracy, the replacement of traditional survey method 

using passively collected data powered by deep learning could be placed on agenda for discussion. 

For real-time implementations in smart mobility service apps such as the incenTrip, more work on 

computing is desired in order to bring down the model training time for these wide-and-deep 

models. 

5.2 Discussion on Further Implementations 

A trained and validated travel mode detection model enables applications in various domains. Our 

implementation context is a mobile phone application, incenTrip, which provides real-time and 

predictive traffic information and incentives to help its users make travel choices. The information 

and incentives are customized and tailored based on the accurate detection of the app user’s actual 

travel modes, thus making our model crucial to the success of the app. GPS and travel data are 

collected by the app in the form of raw format, which includes trajectory, speed and time in a pre-

defined time interval and fed into the Mode Detection engine. The training of the wide and deep 

model also takes place in the Mode Detection Engine. Based on the findings reported in the 

previous sections, the training and updating of the model take less than 5 minutes to reach 98% 

prediction accuracy. Explorations of the other possible implementation of the model can include 

research to understand revealed-preference travel mode choice. The study can be potentially 

applied to evaluate to what extent passively collected GPS survey data can be used to replace 

expensive household travel and activity diaries. If combined with information and incentive 

provision technology such as incenTrip, it is possible to learn trivial behavioral insights on human 

reactions to such interventions.   
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